July 21 2019
9:04 PM
More Stories
Page width:
Ancient 'super-Earth' planet discovered orbiting nearby star

By Mike Wall, Thursday November 15, 2018    12:04 AM

By Mike Wall, The nearest single star to the sun apparently hosts a big, icy planet.

Astronomers have found strong evidence of a frigid alien world about 3.2 times more massive than Earth circling Barnard's Star, a dim red dwarf that lies just 6 light-years from the sun. Barnard's Star is our sun's nearest neighbor, apart from the three-star Alpha Centauri system, which is about 4.3 light-years away.

The newly detected world, known as Barnard's Star b, remains a planet candidate for now. But the researchers who spotted it are confident the alien planet will eventually be confirmed. [Barnard's Star b: What We Know About the "Super-Earth' Candidate]

"After a very careful analysis, we are 99 percent confident that the planet is there," Ignasi Ribas, of the Institute of Space Studies of Catalonia and the Institute of Space Sciences in Spain, said in a statement.

"However, we'll continue to observe this fast-moving star to exclude possible, but improbable, natural variations of the stellar brightness which could masquerade as a planet," added Ribas, the lead author of a new study announcing the detection of Barnard's Star b. That study was published online today (Nov. 14) in the journal Nature.

Barnard's Star b, if confirmed, will not be the nearest exoplanet to Earth. That designation is held by the roughly Earth-size world Proxima b, which orbits Proxima Centauri, one of the Alpha Centauri trio.

NASA's Kepler space telescope showed that small planets are common in the Milky Way galaxy at large. Together, Proxima b and Barnard's Star b strongly suggest that such worlds "are also common in our neighborhood," study co-author Johanna Teske, of the Department of Terrestrial Magnetism at the Carnegie Institution for Science in Washington, D.C., told "And that is super-exciting."

A NEAR SOLAR NEIGHBOR Barnard's Star is named after the American astronomer E.E. Barnard, who in 1916 discovered the speediness Ribas mentioned. No other star moves faster across Earth's sky than Barnard's Star, which travels about the width of the full moon every 180 years. [Gallery: The Strangest Alien Planets]

This unparalleled apparent motion is a consequence of the proximity of Barnard's Star and its high (but not record-setting) velocity of 310,000 mph (500,000 km/h) relative to the sun.

And Barnard's Star is getting closer to us every day: In about 10,000 years, the red dwarf will take over the nearest-star mantle from the Alpha Centauri system. At that time, just 3.8 light-years will separate Barnard's Star from the sun.

Barnard's Star is about twice as old as Earth's sun, one-sixth as massive and just 3 percent as luminous. Because Barnard's Star is so dim, its "habitable zone" — the range of distances where liquid water may be possible on a world's surface — lies extremely close-in. Indeed, researchers estimate that zone to be a sliver that lies 0.06 AU to 0.10 AU from the star. (One AU, or astronomical unit, is the Earth-sun distance — about 93 million miles, or 150 million kilometers.)

The habitable-zone concept is a tricky one, of course. Gauging a world's true habitability requires a strong working knowledge of its atmospheric composition and thickness, among other characteristics. And such information is hard to come by for exoplanets.

A LONG SEARCH Barnard's Star has long been a target of exoplanet hunters, but their searches have always come up empty — until now.

And the new detection wasn't easy: Ribas and his team analyzed huge amounts of data, both archival and newly gathered, before finally digging up Barnard's Star b.

They used the "radial velocity" method, which looks for changes in starlight caused by the gravitational tug of an orbiting planet. Such tugs cause a star to wobble slightly, shifting its light toward red wavelengths at times and toward the blue end of the spectrum at others, as seen from Earth. [7 Ways to Discovery Alien Planets]

"We used observations from seven different instruments, spanning 20 years of measurements, making this one of the largest and most extensive datasets ever used for precise radial-velocity studies," Ribas said in the same statement. "The combination of all data led to a total of 771 measurements — a huge amount of information!"

(Editor - a planet that orbits a star outside the solar system.)

Link to Story Source
Photo: An artist's illustration of the surface of the 'super-Earth' planet candidate detected around Barnard's star, which lies just 6 light-years from the sun.M. Kornmesser/ESO / EPA
Image Search:    |     Last 48 Hours     |     Last 30 Days     |     All Time

Story Search:    |     Last 48 Hours     |     Last 30 Days     |     All Time